Regulation of plant growth and metabolism by the TOR kinase.

نویسندگان

  • Thomas Dobrenel
  • Chloé Marchive
  • Rodnay Sormani
  • Manon Moreau
  • Milena Mozzo
  • Marie-Hélène Montané
  • Benoît Menand
  • Christophe Robaglia
  • Christian Meyer
چکیده

The TOR (target of rapamycin) kinase is present in nearly all eukaryotic organisms and regulates a wealth of biological processes collectively contributing to cell growth. The genome of the model plant Arabidopsis contains a single TOR gene and two RAPTOR (regulatory associated protein of TOR)/KOG1 (Kontroller of growth 1) and GβL/LST8 (G-protein β-subunit-like/lethal with Sec thirteen 8) genes but, in contrast with other organisms, plants appear to be resistant to rapamycin. Disruption of the RAPTOR1 and TOR genes in Arabidopsis results in an early arrest of embryo development. Plants that overexpress the TOR mRNA accumulate more leaf and root biomass, produce more seeds and are more resistant to stress. Conversely, the down-regulation of TOR by constitutive or inducible RNAi (RNA interference) leads to a reduced organ growth, to an early senescence and to severe transcriptomic and metabolic perturbations, including accumulation of sugars and amino acids. It thus seems that plant growth is correlated to the level of TOR expression. We have also investigated the effect of reduced TOR expression on tissue organization and cell division. We suggest that, like in other eukaryotes, the plant TOR kinase could be one of the main contributors to the link between environmental cues and growth processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of target of rapamycin signaling networks in plant growth and metabolism.

The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functi...

متن کامل

Topical Reviews on Target of Rapamycin Signaling Networks The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism

The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functi...

متن کامل

Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR?

In eukaryotes, the ubiquitous TOR (target of rapamycin) kinase complexes have emerged as central regulators of cell growth and metabolism. The plant TOR complex 1 (TORC1), that contains evolutionary conserved protein partners, has been shown to be implicated in various aspects of C metabolism. Indeed Arabidopsis lines affected in the expression of TORC1 components show profound perturbations in...

متن کامل

Novel links in the plant TOR kinase signaling network.

Nutrient and energy sensing and signaling mechanisms constitute the most ancient and fundamental regulatory networks to control growth and development in all life forms. The target of rapamycin (TOR) protein kinase is modulated by diverse nutrient, energy, hormone and stress inputs and plays a central role in regulating cell proliferation, growth, metabolism and stress responses from yeasts to ...

متن کامل

Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway

Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 2  شماره 

صفحات  -

تاریخ انتشار 2011